The Kleinian Arborist<p>This is the first in a series of posts arising from the Fibonacci cusps of Kleinian double-cusp groups. </p><p>The attached static image is an illustration of the Maskit slice; if you draw a line along the topmost points in this plot, it cuts the plane into two regions: above it groups are discrete (and, among other things, are amenable to the ε-termination tool from last time), below it most groups are chaotic (plotted points being the exceptions). </p><p>Each point on the Maskit curve itself corresponds to a point on the real line between 0 and 1, inclusive; by convention we refer to those points that correspond to rational numbers "cusps"; they not only literally stand out from the curve, but also generate very appealing images made up entirely of tangent circles. But there are ofc infinitely more points that correspond to irrational numbers.</p><p>If you imagine perching on the top-right hand side spot at 2+2i, then jumping down and to the left to the next prominent cusp, then down and to the right, then left again, you'll visit: </p><p>1/1, 1/2, 2/3, 3/5, 5/8, 8/13 ...</p><p>These are the Fibonacci cusps, if you follow the path forever, it implies that you'll eventually converge on the point associated with 1/ϕ. </p><p>Art tax: Jorgensen and Maskit projections going through the first seven Fibonacci cusps and back. </p><p>[1] Mumford, D., Series, C., & Wright, D. (2002). Indra's Pearls: The Vision of Felix Klein. Cambridge: Cambridge University Press. doi:10.1017/CBO9781107050051</p><p>[2] <a href="https://people.math.harvard.edu/~ctm/gallery/teich/maskit.gif" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">people.math.harvard.edu/~ctm/g</span><span class="invisible">allery/teich/maskit.gif</span></a></p><p>[3] <a href="https://en.wikipedia.org/wiki/Bers_slice" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">en.wikipedia.org/wiki/Bers_sli</span><span class="invisible">ce</span></a></p><p><a href="https://mathstodon.xyz/tags/kleinianlimitset" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>kleinianlimitset</span></a> <a href="https://mathstodon.xyz/tags/kleiniangroup" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>kleiniangroup</span></a> <a href="https://mathstodon.xyz/tags/fractals" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fractals</span></a> <a href="https://mathstodon.xyz/tags/mobius" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mobius</span></a> <a href="https://mathstodon.xyz/tags/mobiustransforms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mobiustransforms</span></a> <a href="https://mathstodon.xyz/tags/mathematicalart" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematicalart</span></a> <a href="https://mathstodon.xyz/tags/generative" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>generative</span></a> <a href="https://mathstodon.xyz/tags/generativeart" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>generativeart</span></a> <a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/fibonacci" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fibonacci</span></a> <a href="https://mathstodon.xyz/tags/fibonaccicusps" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fibonaccicusps</span></a> <a href="https://mathstodon.xyz/tags/perfectloops" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>perfectloops</span></a></p>