helvede.net is one of the many independent Mastodon servers you can use to participate in the fediverse.
Velkommen til Helvede, fediversets hotteste instance! Vi er en queerfeministisk server, der shitposter i den 9. cirkel. Welcome to Hell, We’re a DK-based queerfeminist server. Read our server rules!

Server stats:

158
active users

#mobius

0 posts0 participants0 posts today
Fractal Kitty<p>Done! There was a delay because I needed to run and eat a pomelo. </p><p><a href="https://mathstodon.xyz/tags/kleinbottle" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>kleinbottle</span></a> <a href="https://mathstodon.xyz/tags/mobius" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mobius</span></a> <a href="https://mathstodon.xyz/tags/bambu" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bambu</span></a> <a href="https://mathstodon.xyz/tags/3dprinting" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>3dprinting</span></a></p>
Tisha Tiger<p>Today in the worst <a href="https://htt.social/tags/keyboard" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>keyboard</span></a> ever competition: the <a href="https://htt.social/tags/mobius" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mobius</span></a> one! ⌨️🔥</p><p><a href="https://landing.google.co.jp/double-sided/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">landing.google.co.jp/double-si</span><span class="invisible">ded/</span></a></p>
Ade Thompson<p>Had to be done.<br><a href="https://mas.to/tags/basilliskii" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>basilliskii</span></a> <a href="https://mas.to/tags/iphone" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>iphone</span></a> <a href="https://mas.to/tags/sidestore" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sidestore</span></a> <a href="https://mas.to/tags/hotline" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>hotline</span></a> <a href="https://mas.to/tags/mobius" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mobius</span></a> <a href="https://mas.to/tags/retromac" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>retromac</span></a></p>
Kabbaway<p>Thank you all so, so much for 600+ Kabbidges! To celebrate, here's my rendition of "No Promises To Keep", the theme song for Final Fantasy VII: Rebirth! 💚</p><p>🔗 <a href="https://youtu.be/DnlBmPVM6LI" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">youtu.be/DnlBmPVM6LI</span><span class="invisible"></span></a></p><p><a href="https://aus.social/tags/Clerith" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Clerith</span></a> <a href="https://aus.social/tags/Cleris" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Cleris</span></a> <a href="https://aus.social/tags/CloudAndAerith" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CloudAndAerith</span></a> <a href="https://aus.social/tags/CloudxAerith" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CloudxAerith</span></a> <a href="https://aus.social/tags/CloudStrife" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CloudStrife</span></a> <a href="https://aus.social/tags/AerithGainsborough" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AerithGainsborough</span></a> <a href="https://aus.social/tags/Aeris" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Aeris</span></a> <a href="https://aus.social/tags/NoPromisesToKeep" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NoPromisesToKeep</span></a> <a href="https://aus.social/tags/FinalFantasyVIIRebirth" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FinalFantasyVIIRebirth</span></a> <a href="https://aus.social/tags/FinalFantasy7Rebirth" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FinalFantasy7Rebirth</span></a> <a href="https://aus.social/tags/FFVIIRebirth" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FFVIIRebirth</span></a> <a href="https://aus.social/tags/FF7Rebirth" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FF7Rebirth</span></a> <a href="https://aus.social/tags/Music" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Music</span></a> <a href="https://aus.social/tags/Sing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Sing</span></a> <a href="https://aus.social/tags/Singing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Singing</span></a> <a href="https://aus.social/tags/Song" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Song</span></a> <a href="https://aus.social/tags/Cover" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Cover</span></a> <a href="https://aus.social/tags/LorenAllred" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LorenAllred</span></a> <a href="https://aus.social/tags/FinalFantasyVII" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FinalFantasyVII</span></a> <a href="https://aus.social/tags/FinalFantasy7" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FinalFantasy7</span></a> <a href="https://aus.social/tags/FFVII" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FFVII</span></a> <a href="https://aus.social/tags/FF7" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FF7</span></a> <a href="https://aus.social/tags/FinalFantasy" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FinalFantasy</span></a> <a href="https://aus.social/tags/SquareEnix" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>SquareEnix</span></a> <a href="https://aus.social/tags/SE" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>SE</span></a> #1997 <a href="https://aus.social/tags/AdventChildren" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AdventChildren</span></a> <a href="https://aus.social/tags/FinalFantasyTactics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FinalFantasyTactics</span></a> <a href="https://aus.social/tags/Dissidia" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Dissidia</span></a> <a href="https://aus.social/tags/KingdomHearts" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>KingdomHearts</span></a> <a href="https://aus.social/tags/Mobius" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Mobius</span></a> <a href="https://aus.social/tags/Remake" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Remake</span></a> <a href="https://aus.social/tags/Rebirth" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Rebirth</span></a> <a href="https://aus.social/tags/SubscriberMilestone" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>SubscriberMilestone</span></a> <a href="https://aus.social/tags/YouTubeMilestone" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>YouTubeMilestone</span></a> <a href="https://aus.social/tags/Kabbaway" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Kabbaway</span></a> <a href="https://aus.social/tags/Kabba" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Kabba</span></a> <a href="https://aus.social/tags/Kab" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Kab</span></a> <a href="https://aus.social/tags/Kabbidge" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Kabbidge</span></a> <a href="https://aus.social/tags/Kabbidges" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Kabbidges</span></a> <a href="https://aus.social/tags/A_Quirky_Australian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>A_Quirky_Australian</span></a> <a href="https://aus.social/tags/Gday_Websurfers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Gday_Websurfers</span></a> <a href="https://aus.social/tags/YouTube" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>YouTube</span></a> <a href="https://aus.social/tags/YouTuber" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>YouTuber</span></a> <a href="https://aus.social/tags/YT" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>YT</span></a> <a href="https://aus.social/tags/YTer" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>YTer</span></a> <a href="https://aus.social/tags/ContentCreator" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ContentCreator</span></a> <a href="https://aus.social/tags/Content_Creator" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Content_Creator</span></a> <a href="https://aus.social/tags/Video" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Video</span></a></p>
Jessica Rosenkrantz<p>There’s a whole Reaction <a href="https://mastodon.social/tags/jewelry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>jewelry</span></a> collection with <a href="https://mastodon.social/tags/M%C3%B6bius" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Möbius</span></a> necklaces and rings too <a href="https://n-e-r-v-o-u-s.com/blog/?p=9442" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">n-e-r-v-o-u-s.com/blog/?p=9442</span><span class="invisible"></span></a></p>
Aaron :bc:🖖 ⬅️ into bean pâté<p>I made this rework of The Moebius by Orbital - It's not like the original at all except for the Star Trek samples used.</p><p>I've put it on my cheeky album: An Ever Expanding Collection of Eclectic Covers and Free Stuff in General.</p><p><a href="https://synaptyx.bandcamp.com/track/m-bius-looped-synaptyx-rework-of-the-m0ebius-by-0rbital" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">synaptyx.bandcamp.com/track/m-</span><span class="invisible">bius-looped-synaptyx-rework-of-the-m0ebius-by-0rbital</span></a></p><p><a href="https://beige.party/tags/Moebius" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Moebius</span></a> <a href="https://beige.party/tags/Mobius" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Mobius</span></a> <a href="https://beige.party/tags/M%C3%B6bius" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Möbius</span></a> <a href="https://beige.party/tags/ElectronicMusic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ElectronicMusic</span></a> <a href="https://beige.party/tags/TB303" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TB303</span></a> <a href="https://beige.party/tags/Acid" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Acid</span></a> <a href="https://beige.party/tags/Sampler" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Sampler</span></a> <a href="https://beige.party/tags/Musodon" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Musodon</span></a> <a href="https://beige.party/tags/FreeMusic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FreeMusic</span></a> <a href="https://beige.party/tags/Synaptyx" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Synaptyx</span></a></p>
Hugh :vm: :python: :cc_cc:<p><span class="h-card" translate="no"><a href="https://mastodon.art/@Ailantd" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>Ailantd</span></a></span> </p><p>♥️</p><p>Bootiful</p><p><a href="https://mas.to/tags/ttrpg" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ttrpg</span></a> <a href="https://mas.to/tags/scifi" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>scifi</span></a> <a href="https://mas.to/tags/Mobius" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Mobius</span></a></p>
The Kleinian Arborist<p>This is the third in a series of posts arising from the Fibonacci cusps of Kleinian double-cusp groups. </p><p>As previously discussed, a series of fractions Fib(n)/Fib(n+1) will tend towards 1/ϕ over time. Correspondingly, the sequence of Fibonacci cusps on the Maskit curve will converge to the point corresponding to 1/ϕ, which generates what I suppose might be called the Golden Mean Group.</p><p>The μ parameter for this group for the Maskit slice where the second and fourth generators are parabolic ("tb=2") is provided in [1], specifically μ=1.2943265032+1.6168866453i (there is a mirror group with essentially the same properties at μ=0.7056734968+1.6168866453i). Curt McMullen and Troels Jorgensen were major proximate contributors to nailing this down. </p><p>Attached are Maskit and Jorgensen renders of the Golden Mean group. Interestingly, this set doesn't meet up like the Fib cusps that led up to it, even though the value of ε was set extremely low. It looks like one of the intermediate frames from the walk animations, not a proper group. But what's there still seems to be made up of tangent circles. What's going on? We'll start to explore that in the next post.</p><p>A completely different take on rendering this group is found in [1], fig 10.4 which is definitely worth a look if you're interested.</p><p>Traversal in R, rendering using Cairo. </p><p>[1] Mumford, D., Series, C., &amp; Wright, D. (2002). Indra's Pearls: The Vision of Felix Klein. Cambridge: Cambridge University Press. doi:10.1017/CBO9781107050051</p><p><a href="https://mathstodon.xyz/tags/kleinianlimitset" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>kleinianlimitset</span></a> <a href="https://mathstodon.xyz/tags/kleiniangroup" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>kleiniangroup</span></a> <a href="https://mathstodon.xyz/tags/fractals" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fractals</span></a> <a href="https://mathstodon.xyz/tags/mobius" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mobius</span></a> <a href="https://mathstodon.xyz/tags/mobiustransforms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mobiustransforms</span></a> <a href="https://mathstodon.xyz/tags/mathematicalart" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematicalart</span></a> <a href="https://mathstodon.xyz/tags/generative" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>generative</span></a> <a href="https://mathstodon.xyz/tags/generativeart" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>generativeart</span></a> <a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/fibonacci" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fibonacci</span></a> <a href="https://mathstodon.xyz/tags/fibonaccicusps" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fibonaccicusps</span></a></p>
The Kleinian Arborist<p>This is the first in a series of posts arising from the Fibonacci cusps of Kleinian double-cusp groups. </p><p>The attached static image is an illustration of the Maskit slice; if you draw a line along the topmost points in this plot, it cuts the plane into two regions: above it groups are discrete (and, among other things, are amenable to the ε-termination tool from last time), below it most groups are chaotic (plotted points being the exceptions). </p><p>Each point on the Maskit curve itself corresponds to a point on the real line between 0 and 1, inclusive; by convention we refer to those points that correspond to rational numbers "cusps"; they not only literally stand out from the curve, but also generate very appealing images made up entirely of tangent circles. But there are ofc infinitely more points that correspond to irrational numbers.</p><p>If you imagine perching on the top-right hand side spot at 2+2i, then jumping down and to the left to the next prominent cusp, then down and to the right, then left again, you'll visit: </p><p>1/1, 1/2, 2/3, 3/5, 5/8, 8/13 ...</p><p>These are the Fibonacci cusps, if you follow the path forever, it implies that you'll eventually converge on the point associated with 1/ϕ. </p><p>Art tax: Jorgensen and Maskit projections going through the first seven Fibonacci cusps and back. </p><p>[1] Mumford, D., Series, C., &amp; Wright, D. (2002). Indra's Pearls: The Vision of Felix Klein. Cambridge: Cambridge University Press. doi:10.1017/CBO9781107050051</p><p>[2] <a href="https://people.math.harvard.edu/~ctm/gallery/teich/maskit.gif" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">people.math.harvard.edu/~ctm/g</span><span class="invisible">allery/teich/maskit.gif</span></a></p><p>[3] <a href="https://en.wikipedia.org/wiki/Bers_slice" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">en.wikipedia.org/wiki/Bers_sli</span><span class="invisible">ce</span></a></p><p><a href="https://mathstodon.xyz/tags/kleinianlimitset" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>kleinianlimitset</span></a> <a href="https://mathstodon.xyz/tags/kleiniangroup" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>kleiniangroup</span></a> <a href="https://mathstodon.xyz/tags/fractals" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fractals</span></a> <a href="https://mathstodon.xyz/tags/mobius" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mobius</span></a> <a href="https://mathstodon.xyz/tags/mobiustransforms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mobiustransforms</span></a> <a href="https://mathstodon.xyz/tags/mathematicalart" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematicalart</span></a> <a href="https://mathstodon.xyz/tags/generative" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>generative</span></a> <a href="https://mathstodon.xyz/tags/generativeart" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>generativeart</span></a> <a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/fibonacci" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fibonacci</span></a> <a href="https://mathstodon.xyz/tags/fibonaccicusps" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fibonaccicusps</span></a> <a href="https://mathstodon.xyz/tags/perfectloops" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>perfectloops</span></a></p>
The Kleinian Arborist<p>When using a DFS to draw a Kleinian limit set, you partially traverse an infinite 3-ary tree. Each node corresponds both to a particular word in a 4-letter alphabet and an ordered set of points. Line segments can be drawn connecting those points in order; the deeper you go into the tree before drawing, the more detail you get. But when do you stop? </p><p>Many visually-appealing groups have the property that the node path length monotonically decreases as you descend any particular path, making "ε-termination" quite useful : when the distance along a node's path is less than a provided value ε, draw and terminate. </p><p>The optimal ε depends on the size of your pixels in math space, your drawing technique (for example, in general a higher ε wants a higher line width), and how much quality you want. </p><p>Attached is an animation showing how the renders of three different Kleinian limit sets change as the {ε, line width} parameters are decreased from {500 pixels, 4.5 pixels} to {2 pixels, 0.5 pixels}. An animation with more limit sets included is available at <a href="https://www.youtube.com/watch?v=gH4kacpgw_A" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">youtube.com/watch?v=gH4kacpgw_</span><span class="invisible">A</span></a>. </p><p>The groups shown are :</p><p>- Riley group with parameter c=0.05+0.93i<br>- Jorgensen projection of the 3/31 double-cusp group<br>- Jorgensen group with parameters ta=1.87+0.1i, tb=1.87-0.1i</p><p>I wrote the rendering code in R, used Cairo to export to .png, and ffmpeg to convert to .mp4. </p><p>[1] Mumford, D., Series, C., &amp; Wright, D. (2002). Indra's Pearls: The Vision of Felix Klein. Cambridge: Cambridge University Press. doi:10.1017/CBO9781107050051</p><p><a href="https://mathstodon.xyz/tags/kleinianlimitset" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>kleinianlimitset</span></a> <a href="https://mathstodon.xyz/tags/kleiniangroup" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>kleiniangroup</span></a> <a href="https://mathstodon.xyz/tags/fractals" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fractals</span></a> <a href="https://mathstodon.xyz/tags/mobius" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mobius</span></a> <a href="https://mathstodon.xyz/tags/mobiustransforms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mobiustransforms</span></a> <a href="https://mathstodon.xyz/tags/mathematicalart" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematicalart</span></a> <a href="https://mathstodon.xyz/tags/generative" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>generative</span></a> <a href="https://mathstodon.xyz/tags/generativeart" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>generativeart</span></a> <a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathart</span></a></p>
The Kleinian Arborist<p>As scaffolding for a larger project, I had to figure out how to uniquely enumerate the generalized circles that make up any double-cusp Kleinian limit set, and determine their representative matrices. </p><p>Once I had my hands on that, it seemed natural to use those open interior spaces to recursively nest other limit sets. </p><p>The enclosing limit set is a 0/1 cusp displayed in the unit-circle reference projection described in _Indra's Pearls_. The nested limit sets were picked by starting at a random location in a large Farey sequence and simply using sequential elements. </p><p>The coloration comes from drawing the line segments based on how long the word associated with their corresponding terminal node is; this render used a palette of length 50, and flips the order of traversal at each nesting layer. </p><p>I wrote the rendering code in R, and rendered to .png using Cairo. </p><p>[1] Mumford, D., Series, C., &amp; Wright, D. (2002). Indra's Pearls: The Vision of Felix Klein. Cambridge: Cambridge University Press. doi:10.1017/CBO9781107050051</p><p><a href="https://mathstodon.xyz/tags/kleinianlimitset" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>kleinianlimitset</span></a> <a href="https://mathstodon.xyz/tags/kleiniangroup" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>kleiniangroup</span></a> <a href="https://mathstodon.xyz/tags/fractals" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fractals</span></a> <a href="https://mathstodon.xyz/tags/mobius" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mobius</span></a> <a href="https://mathstodon.xyz/tags/mobiustransforms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mobiustransforms</span></a> <a href="https://mathstodon.xyz/tags/mathematicalart" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematicalart</span></a> <a href="https://mathstodon.xyz/tags/generative" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>generative</span></a> <a href="https://mathstodon.xyz/tags/generativeart" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>generativeart</span></a> <a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathart</span></a></p>
The Kleinian Arborist<p><a href="https://mathstodon.xyz/tags/introduction" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>introduction</span></a> </p><p>Hi, I'm Sônia (she/her), and this is my hobbyist computational-math account. I decided to invest some time into _Indra's Pearls_ by Mumford, Series, Wright a little over a decade ago, and a quest that started out with "do all the assignments" has turned into a personal research and artistic program. </p><p>I spend a lot of time thinking about sets of tangent circles. So much so that if I got a "revive an ancient mathematician for a day" boon, I'd spend it on Apollonius. I'm pretty sure that my guy from Perga would a) be fascinated by the beauty of Kleinian double-cusp groups and b) tell me we were cheating by using calculations instead of construction. Sorry, fans of Euclid, Brahmagupta, and person-who-invented-zero. <a href="https://mathstodon.xyz/tags/academicnecromancy" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>academicnecromancy</span></a></p><p>This account is intended to be primarily used to post artwork/videos and links to interactive demos, explanations of the techniques used to render them, and engaging with any discussions prompted by the preceding.</p><p><a href="https://mathstodon.xyz/tags/kleiniangroups" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>kleiniangroups</span></a> <a href="https://mathstodon.xyz/tags/steinerchains" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>steinerchains</span></a> <a href="https://mathstodon.xyz/tags/fractionallineartransforms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fractionallineartransforms</span></a> <a href="https://mathstodon.xyz/tags/mobius" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mobius</span></a> <a href="https://mathstodon.xyz/tags/fractals" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fractals</span></a> <a href="https://mathstodon.xyz/tags/R" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>R</span></a> <a href="https://mathstodon.xyz/tags/glsl" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>glsl</span></a> <a href="https://mathstodon.xyz/tags/shadertoy" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>shadertoy</span></a> <a href="https://mathstodon.xyz/tags/indraspearls" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>indraspearls</span></a> <a href="https://mathstodon.xyz/tags/mobiustransforms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mobiustransforms</span></a></p>
Jen Fraser<p>The <a href="https://mstdn.social/tags/MobiusArch" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MobiusArch</span></a> in <a href="https://mstdn.social/tags/AlabamaHills" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AlabamaHills</span></a> <a href="https://mstdn.social/tags/California" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>California</span></a> is such a unique <a href="https://mstdn.social/tags/arch" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>arch</span></a> . This <a href="https://mstdn.social/tags/NightPhotography" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NightPhotography</span></a> was achieved by shining a dim light on the inside of the arch during a <a href="https://mstdn.social/tags/LongExposure" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LongExposure</span></a> .<br><a href="https://mstdn.social/tags/LandscapePhotography" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LandscapePhotography</span></a> <a href="https://mstdn.social/tags/TravelPhotography" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TravelPhotography</span></a> <a href="https://mstdn.social/tags/Wanderlust" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Wanderlust</span></a> <a href="https://mstdn.social/tags/PhotoOfTheDay" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PhotoOfTheDay</span></a> <a href="https://mstdn.social/tags/Travel" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Travel</span></a> <a href="https://mstdn.social/tags/Nature" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Nature</span></a> <a href="https://mstdn.social/tags/NaturePhotography" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NaturePhotography</span></a> <a href="https://mstdn.social/tags/Rocks" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Rocks</span></a> <a href="https://mstdn.social/tags/Mobius" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Mobius</span></a></p>